Local Rankin-Selberg convolutions for $\mathrm {GL}_{n}$: Explicit conductor formula
نویسندگان
چکیده
منابع مشابه
On the Nonvanishing Hypothesis for Rankin-selberg Convolutions
Inspired by Sun’s breakthrough in establishing the nonvanishing hypothesis for Rankin-Selberg convolutions for the groups GLn(R)×GLn−1(R) and GLn(C)×GLn−1(C), we confirm it for GLn(C)×GLn(C) at the central critical point.
متن کاملStrong exponent bounds for the local Rankin-Selberg convolution
Let $F$ be a non-Archimedean locally compact field. Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$. We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$. We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$. Using the Langlands...
متن کاملOn the Poles of Rankin-selberg Convolutions of Modular Forms
The Rankin-Selberg convolution is usually normalized by the multiplication of a zeta factor. One naturally expects that the non-normalized convolution will have poles where the zeta factor has zeros, and that these poles will have the same order as the zeros of the zeta factor. However, this will only happen if the normalized convolution does not vanish at the zeros of the zeta factor. In this ...
متن کاملLOCAL GEOMETRIZED RANKIN-SELBERG METHOD FOR GL(n)
Following G. Laumon [12], to a nonramified `-adic local system E of rank n on a curve X one associates a complex of `-adic sheaves nKE on the moduli stack of rank n vector bundles on X with a section, which is cuspidal and satisfies the Hecke property for E. This is a geometric counterpart of the well-known construction due to J. Shalika [19] and I. Piatetski-Shapiro [18]. We express the cohomo...
متن کاملArchimedean Rankin-Selberg Integrals
The paper gives complete proofs of the properties of the RankinSelberg integrals for the group GL(n,R) and GL(n,C).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Mathematical Society
سال: 1998
ISSN: 0894-0347,1088-6834
DOI: 10.1090/s0894-0347-98-00270-7